Publications

Vous trouvez ici toutes nos publications
12 publications sur 10
Afficher :
Par Date :

actualites
Publié le 26 Janvier 2018

InnovaSol recrute un(e) post-doctorant(e) sur le sujet :

Mesures rapides de flux de polluants volatils dans les sols.

Ce projet fait partie du Programme de recherche du consortium InnovaSol, cofinancé par l'ADEME. Il s’agit de pouvoir donner une réponse rapide lors d’aménagement de friches à la question des flux de polluants pouvant être émis par les sols, soit vers la surface (ex : volatils vers l’air intérieur des habitations), soit vers les nappes. Le projet comprendra donc un aspect pratique, avec des tests de méthodes de terrain sur des sites contaminés mais aussi une réflexion sur l’estimation des flux et des risques associés à ceux-ci. La question scientifique sous-jacente est la faiblesse constatée des méthodes prédisant les risques à partir de mesures de teneurs totales dans les sols. Il s’agit donc de remplacer cette méthode classique par des mesures directes de terrain. Si la mesure de terrain existe, elle est actuellement très longue à mettre en place. L’approche proposée envisage une mesure directe sur site (chromatographe portable). Les compétences demandées sont centrées sur les la connaissance du travail de terrain, mais aussi des méthodes d’analyse chimique de type chromatographie. Une connaissance du domaine des sols pollués et du calcul de risques serait un plus. Contrat d'un an rémunéré, à compte du 1er mars 2018 Poste basé à Bordeaux, à l'ENSEGID Modalités de candidature : Adressez vos candidatures (lettre et CV) à : olivier.atteia@ensegid.fr    

Lire la suite

Qu’est-ce que l’EDA ? Comment l’utiliser pour tester la toxicité des sols ?

Evaluer les risques
Publié le 15 Janvier 2018
Qu'est-ce que l'EDA ? L’analyse dirigée par l’effet (ou Effect Directed Analysis en anglais, EDA) a pour objectif de découvrir si un contaminant est responsable des effets toxiques dans un compartiment environnemental. Cette méthode vise à identifier des molécules organiques responsables d’activités biologiques à l’aide d’une démarche analytique guidée par des fractionnements physico-chimiques et des biotests. L'approche consiste, après extraction des composés de la matrice, à effectuer des biotests sur l'extrait et des sous-fractions afin d’identifier une réponse biologique qui peut impliquer soit des récepteurs de toxicité spécifiques (e.g. le récepteur Ah qui est sensible aux hydrocarbures) soit des organismes entiers pour les tests de toxicité aiguë (Microtox ...).   Comment gérer autant de molécules ? Figure 1 : principe de l’EDA L'analyse d’un extrait ne permet pas l'identification de molécules en lien avec une toxicité observée, en particulier si la contamination est complexe. Par conséquent, l’EDA comprend deux étapes de fractionnement. La première étape conduit à une dizaine de fractions qui sont analysées à l’aide des biotests. Les fractions qui répondent sont ensuite de nouveau fractionnées pour tenter d’isoler les molécules et au final chaque molécule est testée avec le biotest sélectionné (Figure 1). Après identification, il est nécessaire de passer par une étape de confirmation finale en testant la molécule seule pour vérifier sa réponse biologique et de confirmer l’adéquation entre molécule identifiée et étalon de référence afin de s’assurer qu'aucune erreur n’a eu lieu lors du processus EDA.   Comment avons-nous appliqué l’approche sur les sols ? Dans le contexte de la thèse de Maximilien Delafoulhouze les sols utilisés ont été sélectionnés à partir de résultats de bio-essais effectués sur des sols contaminés par des Hydrocarbures Aromatiques Polycycliques (HAP), souvent en mélange avec d’autres polluants. La première phase de l’étude a consisté en une qualification globale de la méthode afin de valider les méthodes d’extraction et de séparation. L’EDA requiert de très nombreuses phases de validation avant de pouvoir faire le lien entre une molécule ou un groupe de molécules et leur toxicité. D’une part, il faut savoir si la phase d’extraction n’enlève pas de composés ou ne rajoute pas de molécules toxiques. Il convient aussi de définir si la phase de séparation ne conduit pas à une perte de certaines substances, conduisant ainsi à une perte de toxicité de l’extrait. Ceci doit être vérifié à chacune des étapes. Ces opérations de mise au point des méthodes étant très fastidieuses et chronophages, les résultats présentés ici sont issus d’analyses menées dans le détail sur 3 échantillons.   Quel type de résultats obtient-on ? Figure 2 : équivalent-toxiques des fractions, exprimés en µg/g de Benzo(a)pyrène par g de sol. Les composés identifiés, autres que les 16 HAP de référence, sont décrits dans la figure suivante. La Figure  2 ci-dessous illustre la part de toxicité identifiée dans les différentes fractions ainsi que la toxicité expliquée par les HAP identifiés au préalable. La toxicité est exprimée en équivalent-toxiques de Benzo(a)pyrène. Nous pouvons voir sur cette figure que les 16 HAP réglementaires sont présents principalement dans la fraction 8 et que, dans celle-ci, ils constituent plus de la moitié de la toxicité constatée. A l’inverse, dans les autres fractions, ils sont presque absents et constituent une part minime de la toxicité. Dans les fractions lourdes, les composés constituants la toxicité n’ont pas pu être identifiés, à l’inverse des fractions 7, 8 et 9,  où certains composés l’ont été.         Figure 3 : équivalent-toxiques pour les composés identifiés dans les différentes fractions. La plupart proviennent de la fraction 7, sauf les 5,12-Naphthacènequinone et Cyclopenta(def)phénanthrènone qui sont dans la fraction 9, et les 11h-benzo(a)fluorène-11-one et 7H-Benzo[c]fluorène dans la fraction 8.La Figure 3 précise les molécules identifiées qui sont responsables de la toxicité mesurée dans les fractions 7, 8 et 9. Parmi ces molécules, on trouve des HAP qui ne sont pas dans la liste des 16 molécules prioritaires et des dérivés qui sont soit des oxy-HAP, soit des dérivés contenant du soufre tels que les thiophènes. La « somme des autres » comprend vingt autres molécules qui ont été identifiées mais nous pouvons constater que leur toxicité cumulée est faible. Ainsi, parmi les composés identifiés, une dizaine d’entre eux conduit à la majeure partie de la toxicité.     Mais au final à quoi ça sert ? A partir de ces premiers résultats, il apparaît que la méthode est prometteuse, même si elle est longue à mettre en œuvre. Il est clair que l’objectif n’est pas de réaliser, à terme, des EDA sur tous les échantillons de sols d’un site contaminé. Il s’agit, au contraire, à partir de l’analyse d’un certain nombre d’échantillons assez diversifiés, d’identifier des nouveaux composés pertinents qui seraient ubiquistes ou a contrario spécifiques d’un certain type de contamination en vue de modifier la liste des 16 HAP réglementaires, pour que ceux qui sont analysés puissent être associés à une toxicité réelle. Ceci pourrait conduire à avoir un meilleur lien entre les estimations de la réelle toxicité des sols, les risques associés, et donc les opérations de réhabilitation nécessaires à réaliser. Auteurs : Maximilien DELAFOULHOUZE, Hélène BUDZINSKI, Grégory COHEN, Olivier ATTEIA

Lire la suite

Essais en pilotes 3D : un prérequis pour étudier l’efficacité d’un traitement de sol contaminé au NAPL

Traiter in situ
Publié le 27 Novembre 2017

La remédiation des aquifères contaminés par des NAPL (Non Aqueous Phase Liquid) est connue pour être difficile. La réussite de cette démarche repose principalement sur le choix de la technique de dépollution à mettre en œuvre. Or, les études scientifiques montrent qu’il y a de grandes différences d’efficacité parmi les techniques les plus employées (oxydation, injection de tensio-actifs, sparging et techniques thermiques).

Figure 1 : Schéma des pilotes

InnovaSol a mené une comparaison détaillée de ces techniques à l’échelle de pilotes métriques en trois dimensions, avec l’objectif de décrire l’influence des hétérogénéités sur l’efficacité de ces traitements.

Quatre pilotes métriques (Figure 1) ont été construits à l’identique pour les expériences. Ils ont été principalement remplis par un sable relativement perméable (K=4×10−4 m s−1) dans lequel ont été insérées trois lentilles de sable contaminées (10% de saturation) par une mélange décane/toluène (1:1).

Figure 2 : Programme de traitement des pilotes

Une fois la phase de conditionnement achevée, chacun des pilotes a suivi un traitement spécifique résumé sur la Figure 2.

La méthode thermique a été clairement la plus efficace (Figure 3), avec une décontamination approchant les 99% lorsque la bonne température est atteinte, contre environ 80% en considérant l’intégralité du pilote. En prenant en compte l’ensemble des incertitudes, il semble que les autres méthodes aient une efficacité similaire entre elles, avec environ 50% de décontamination (conditionnement inclus), tout en présentant certaines spécificités.

Figure 3 : Résultats L’oxydation au persulfate a eu de meilleurs résultats dans les zones de faible conductivité hydraulique par rapport au lessivage avec tensio-actif ou le traitement thermique. Ceci est probablement dû à l’effet densitaire de la solution oxydante qui a permis une meilleure pénétration du traitement dans le bas du pilote. Le traitement thermique semble être le seul capable d’atteindre 100% d’élimination de la contamination, montrant qu’il est le seul traitement non impacté par les hétérogénéités. Des études ont montré l’efficacité de l’utilisation combinée de ces différentes techniques. Quoi qu’il en soit, l’utilisation de pilotes à l’échelle métrique s’avère un prérequis primordial pour valider l’efficacité de ces techniques sur le terrain avant leur mise en place.   Auteurs : O. Atteia, g. Cohen, F. Jousse, M. Momtbrun Pour lire l’article complet, avec un complément en modélisation prédictive, se reporter au numéro d’Environnement & Technique n° 374 – Novembre 2017

Lire la suite

URGENT : Ouverture d’un doctorat à pourvoir immédiatement

actualites
Publié le 8 Novembre 2017

InnovaSol recherche un(e) doctorant(e) pour le projet MUTASOL : Mutations foncières des sols pollués : risques et coûts.

Discipline : Aménagement de l'espace et urbanisme/Sciences économiques

Cofinancé par la Région Nouvelle-Aquitaine, le consortium InnovaSol et l'ADEME, «MUTASOL» associe les sciences humaines et sociales (IATU–Institut d’aménagement, de tourisme et d’urbanisme) et les sciences de l’ingénieur (ENSEGID - École nationale supérieure en environnement, géoressources et ingénierie du développement durable).

L'objectif principal de cette recherche interdisciplinaire consiste à proposer à la Région Nouvelle Aquitaine une méthodologie d'aide à la décision pour la réintroduction dans le marché foncier urbain des friches industrielles , via l'&élaboration des scénarios stratégiques d'aménagement et de dépollution.

Les processus de valorisation foncière (degré de capitalisation de projets et opérations de réhabilitation d'une friche dans les prix des biens immobiliers et urbains, dans la valeur foncière de la friche) et de gestion des risques sanitaires et environnementaux seront approchés collaborativement. Le contrat doctoral proposé s'attachera plus particulièrement au premier point en se fondant, pour sa partie expérimentale, sur des sites pilotes choisis en concertation avec les partenaires du contrat de recherche.

Modalités de candidature :

Financement de la thèse : Cofinancement obtenu - Doctorat rémunéré

Poste basé à Bordeaux

Conditions de candidature : Master 2 obtenu en Aménagement de l'espace et urbanisme (prérequis souhaités en stratégie foncière) ou en Sciences économiques (prérequis souhaités en analyse des coûts urbains)

Contact : Agnès BERLAND-BERTHON, Professeur en Aménagement de l'espace et urbanisme, Directrice de l'IATU-  Agnes.Berland-Berthon@u-bordeaux-montaigne.fr

   

Lire la suite

Passive Flux Meter (PFM) : un outil efficace pour la mesure des flux massique de contaminants dans les piézomètres

Diagnostiquer
Publié le 4 Octobre 2017

Le Passive Flux Meter (PFM) développépar ENVIROFLUX (Floride, USA) est un outil permettant de mesurer les flux massiques de contaminant ainsi que les vitesses d’écoulement dans un aquifère. Cet outil, sous forme de cylindre est composé de plusieurs blocs de charbons actifs retenus par une toile filtrante en nylon. Les dimensions de l’outil sont variables et sont choisies en fonction de l’étude à réaliser.

Les blocs de charbons actifs sont séparés tous les 20 cm par un caoutchouc afin d’éviter les échanges verticaux de flux, permettant ainsi d’avoir une distribution verticale des vitesses et des flux de contaminants.  Le charbon actif utilisé dans les PFMs est initialement imprégné de 4 ou 5 « traceurs » ayant chacun un facteur de retard différent par rapport à l’écoulement naturelle de l’aquifère.

Le PFM est inséré directement dans un piézomètre durant une période pouvant varier de 2 à 3 semaines (en fonction de  l’écoulement de l’aquifère étudié) avant d’être analysé en laboratoire. L’exposition des PFMs dans le piézomètre entraine la disparition d’un ou plusieurs des traceurs initialement présents selon la vitesse d’écoulement au sein du milieu. A partir des proportions de traceurs restant, il est possible d’estimer la vitesse d’écoulement dans le piézomètre.

De plus, la sorption des contaminants sur ces charbons actifs permet de déterminer la quantité de polluants accumulée durant le temps d’exposition.  Ceci permet d’en déduire le flux massique de contaminants ayant traversé le piézomètre.

Dans le cadre de thèses financées par INNOVASOL, plusieurs PFMs de 100 cm de longueur (Photo ci-dessus) ont été utilisés sur deux sites industriels contaminés. Les résultats de ces campagnes ont permis d’établir une distribution verticale des flux massiques de contaminants (Figure ci-contre) et ainsi de localiser les horizons les plus productifs en termes de flux de contaminants, facilitant par la suite la localisation potentielle d’une zone source.

  By Elyess ESSOUAYED

Lire la suite

InnovaSol interviendra à AquaConSoil 2017

actualites
Publié le 24 Mai 2017

Elyess ESSOUAYED, doctorant, présentera "An innovative combination of tools to measure fluxes of contaminants in aquifer"

Session : 1b.1 Passive Samplers & Passive flux samplers le 28 juin 2017 à 11h-11h30 ROOM 3


Lire la suite